87 research outputs found

    Analysis of UAV wing load calculation

    Get PDF
    According to the existing wing structure design cases, design a simple model of the UAV wing according to the engineering needs, and use the flow-solid coupling function of the ansys finite element analysis software to calculate the working load of the wing structure

    Phase-Shift Cyclic-Delay Diversity for MIMO OFDM Systems

    Get PDF
    Phase-shift cyclic-delay diversity (PS CDD) scheme and space-frequency-block-code (SFBC) PS CDD are developed for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed PS CDD scheme preserves the diversity advantage of traditional CDD in uncorrelated multiantenna channels, and furthermore removes frequency-selective nulling problem of the traditional CDD in correlated multiantenna channels

    Link adaptation for energy-efficient uplink coordinated multi-point receptions

    Get PDF
    We investigate link adaptation methods for energy-efficient uplink coordinated multi-point receptions. A system model for practical cellular networks is introduced, in which only a subset of base stations participates in cooperative link adaptation and cooperative decoding for uplink transmissions. To cope with channel-state-information (CSI) mismatch incurred from the system model, link adaptation controllers implementing rate back-off from the maximum achievable rate calculated with the mismatched CSI is introduced. From analytical and simulation results, it is concluded that under a certain condition, the rate back-off does not help to improve energy efficiency, where, for example, the condition holds when the CSI errors are modeled as additive Gaussian random variables. Furthermore, energy efficiency of multi-user spatial-division-multiple-access uplink transmissions is studied in isolated cooperative cellular networks. In this scenario, an analytical expression for the optimal link adaptation achieving maximum energy efficiency is obtained

    Link adaptation for energy-efficient uplink coordinated multi-point receptions

    Get PDF
    We investigate link adaptation methods for energy-efficient uplink coordinated multi-point receptions. A system model for practical cellular networks is introduced, in which only a subset of base stations participates in cooperative link adaptation and cooperative decoding for uplink transmissions. To cope with channel-state-information (CSI) mismatch incurred from the system model, link adaptation controllers implementing rate back-off from the maximum achievable rate calculated with the mismatched CSI is introduced. From analytical and simulation results, it is concluded that under a certain condition, the rate back-off does not help to improve energy efficiency, where, for example, the condition holds when the CSI errors are modeled as additive Gaussian random variables. Furthermore, energy efficiency of multi-user spatial-division-multiple-access uplink transmissions is studied in isolated cooperative cellular networks. In this scenario, an analytical expression for the optimal link adaptation achieving maximum energy efficiency is obtained

    Intercell Interference Coordination through Limited Feedback

    Get PDF
    We consider the applications of multicell transmission schemes to the downlink of future wireless communication networks. A multicell multiple-input multiple output-(MIMOs) based scheme with limited coordination among neighboring base stations (BSs) is proposed to effectively combat the intercell interference by taking advantage of the degreesoffreedom in the spatial domain. In this scheme, mobile users are required to feedback channel-related information to both serving base station and interfering base station. Furthermore, a chordal distance-based compression scheme is introduced to reduce the feedback overhead. The performance of the proposed scheme is investigated through theoretical analysis as well as system level simulations. Both results suggest that the so-called “intercell interference coordination through limited feedback” scheme is a very good candidate for improving the cell-edge user throughput as well as the average cell throughput of the future wireless communication networks
    corecore